Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain.

نویسندگان

  • Volker Neugebauer
  • Weidong Li
چکیده

Pain is associated with negative affect such as anxiety and depression. The amygdala plays a key role in emotionality and has been shown to undergo neuroplastic changes in models of affective disorders. Many neurons in the central nucleus of the amygdala (CeA) are driven by nociceptive inputs, but the role of the amygdala in persistent pain states is not known. This study is the first to address nociceptive processing by CeA neurons in a model of prolonged pain. Extracellular single-unit recordings were made from 41 CeA neurons in anesthetized rats. Each neuron's responses to brief mechanical stimulation of joints, muscles, and skin and to cutaneous thermal stimuli were recorded. Background activity, receptive field size, and threshold were mapped, and stimulus-response functions were constructed. These parameters were measured repeatedly before and after induction of arthritis in one knee by intraarticular injections of kaolin and carrageenan. Multireceptive (MR) amygdala neurons (n = 20) with excitatory input from the knee joint responded more strongly to noxious than to innocuous mechanical stimuli of deep tissue (n = 20) and skin (n = 11). After induction of arthritis, 18 of 20 MR neurons developed enhanced responses to mechanical stimuli and expansion of receptive field size. These changes occurred with a biphasic time course (early peak: 1-1.5 h; persistent plateau phase: after 3-4 h). Responses to thermal stimuli did not change (7 of 7 neurons), but background activity (16 of 18 neurons) and electrically evoked orthodromic activity (11 of 12 neurons) increased in the arthritic state. Nociceptive-specific (NS) neurons (n = 13) showed no changes of their responses to mechanical, thermal, and electrical stimulation after induction of arthritis. A third group of neurons did not respond to somesthetic stimuli under control conditions (noSOM neurons; n = 8) but developed prolonged responses to mechanical, but not thermal, stimuli in arthritis (5 of 8 neurons). These data suggest that prolonged pain is accompanied by enhanced responsiveness of a subset of CeA neurons. Their sensitization to mechanical, but not thermal, stimuli argues against a nonspecific state of hyperexcitability. MR neurons could serve to integrate and evaluate information in the context of prolonged pain. Recruitment of noSOM neurons increases the gain of amygdala processing. NS neurons preserve the distinction between nociceptive and nonnociceptive inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5.

Pain has a strong emotional-affective dimension, and the amygdala plays a key role in emotionality. Mechanisms of pain-related changes in the amygdala were studied at the cellular and molecular levels in a model of arthritis pain. The influence of the arthritic condition induced in vivo on synaptic transmission and group I metabotropic glutamate receptor (mGluR1 and mGluR5) function was examine...

متن کامل

Role of capsaicin-sensitive C-fiber afferents in neuropathic pain-induced synaptic potentiation in the nociceptive amygdala

BACKGROUND Neurons in the capsular part of the central nucleus of the amygdala (CeC), a region also called "nociceptive amygdala," receive nociceptive information from the dorsal horn via afferent pathways relayed from the lateral parabrachial nucleus (LPB). As the central amygdala is known to be involved in the acquisition and expression of emotion, this pathway is thought to play central role...

متن کامل

Enhanced group II mGluR-mediated inhibition of pain-related synaptic plasticity in the amygdala

Pain has a strong emotional component. A key player in emotionality, the amygdala is also involved in pain processing. Our previous studies showed synaptic plasticity in the central nucleus of the amygdala (CeA) in a model of arthritic pain. Here, we address the role of group III metabotropic glutamate receptors (mGluRs) in the regulation of synaptic transmission in CeA neurons. Whole-cell curr...

متن کامل

Differential changes of group II and group III mGluR function in central amygdala neurons in a model of arthritic pain.

Metabotropic glutamate receptors (mGluRs) play important roles in neuroplasticity and disorders such as persistent pain. Group I mGluRs contribute to pain-related sensitization and synaptic plasticity of neurons in the laterocapsular division of the central nucleus of the amygdala (CeLC), although the roles of groups II and III mGluRs are not known. Extracellular single-unit recordings were mad...

متن کامل

Central Terminal Sensitization of TRPV1 by Descending Serotonergic Facilitation Modulates Chronic Pain

The peripheral terminals of primary nociceptive neurons play an essential role in pain detection mediated by membrane receptors like TRPV1, a molecular sensor of heat and capsaicin. However, the contribution of central terminal TRPV1 in the dorsal horn to chronic pain has not been investigated directly. Combining primary sensory neuron-specific GCaMP3 imaging with a trigeminal neuropathic pain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 89 2  شماره 

صفحات  -

تاریخ انتشار 2003